
Agile Project
Management at Penn

Delphine Khanna
University of Pennsylvania
DLF Forum -- Nov 1, 2010

How we got there
  Grew organically over the last 4 years

through trial and error
  Goals

  Create a project management structure that:
  Keeps overhead to a minimum
  Allows for maximum flexibility and nimbleness
  Gives us a sense that things are under control

  Deadlines met, software development not seen as the
bottleneck, ability to complete each project more quickly,
and handle more projects concurrently and efficiently

How we got there (2)
  Took quite some inspiration from the agile/

scrum approach
  Agile Manifesto
  Formal agile/scrum training about a year ago

  With Kristine Shannon

  Not trying to be systematic about following scrum
  No claim at all that we are a Scrum shop

  We don’t use most of the jargon! ;-)

Note

  To give the context of our approach
  Describe a bit our software system and our

team set up

Key concepts in our project
management approach
  Software development = series of distinct

functionality pieces (Scrum: “user stories”)
  Transparence

  Everybody in the organization can see exactly what we are
doing and where we are in our development

  Clear and reliable milestones
  (Internal) customers trust that we will meet our milestones

  Go into production only once a month
  Move new code from development server to production

server
  Creates a regular rhythm around which our work is

organized (Scrum: “sprints”)

Software system: the DLA
  PM approach went hand in hand with the

development of a “generalized” software
system
  A single system that handles all our delivery needs

  Collections of images, book facsimiles, EAD finding aids,
“netflix-style” video catalog, staff directory, and much
more…

  Based on Solr/Lucene
  With generalized ingestion tools and generalized

web delivery
  Both customizable through configuration files

Software system: the DLA (2)
  Some new projects require 0 core

development
  E.g., a new image collection, when we have

already the features needed to handle image
collections

  Just a matter of ingesting the collection and
configuring it

  XSLT/CSS-based customization
  + Cataloging / metadata clean up / scanning / QA, etc.

Software system: the DLA (3)
  Some new projects require some new

pieces of functionality
  E.g., a collection of arabic book facsimiles

requires us to add the functionality “right-
to-left page browsing”

Consequences on
project management
  Clear distinction between “ingestion of a

new collection” and “software
development”

  Ingestion is done by “DLA Ingesters”
  They do not need to be expert

programmers (mostly XML and XSLT)

Consequences on
project management (2)
  Software development

  Done by Core Programmer(s)
  Seen as a list of functionality pieces

  Independent from each other
  Small to medium in size

  Advantages
  Easier to establish priorities
  Easier to control the timeline

  Come up with clear milestones
  Quicker results

  Each time a piece is ready, it can go live, without waiting
for a big release at the end of several months

Team structure
  1 DLA Software Team

  Develops the DLA software (all new DLA
functionality pieces)

  Composed of:
  1 Team Lead / Project Manager
  Core Programmer(s): 0.5 to 1 FTE

Staff structure (2)
  4 DLA Content Teams

  Ingest new collections into the DLA system
  Each team focuses on one format

  Images, Book Facsimiles, OPAC Subsets, Non-Marc
(EAD, OAI, etc.)

  Core members on each team
  1 DLA Ingester, 1 Cataloger/Metadata Librarian, 1 Public

Services Librarian, Web Designer
  Note: not a cast of thousands

  E.g., I am the Team Lead for DLA Software Team and a
DLA Ingester

Staff structure (3)
  Guest members on each DLA Content Team

  Onboard only for the duration of one project
  Collection-specific experts

  Curators, bibliographers, catalogers, HR person, etc.
  One of them is always the “project owner”

  Provides ongoing advocacy for the project (even after the
project is completed), takes care of it, notices problems in
the long term, etc. (+/- Scrum: “Product Owner”)

  Advantage of having core members
  Develop very strong DLA expertise

Heavy use of Google Docs
spreadsheets
  Especially to manage each team’s to-do list

(Scrum: “backlog”)
  Very low overhead to enter a new to-do item
  Can easily sort list based on various criteria
  Edit the spreadsheet during the meeting

  By the end of the meeting your to-do list is
essentially up to date

  Each to-do item is assigned complexity points
and priority points (another Scrum thing)
  Helps prioritization effort

Heavy use of Google Docs
spreadsheets (2)
  Every to-do list is viewable by all staff

  Total transparency
  Helps communicate on “what keeps you busy

all day” question
  Helps working out prioritization issues across

the organization
  People can see where their desired functionality stands,

and which other functionalities have higher priority
  Really helps them understand “why” we are not working

on their functionality right now
  DLA Oversight Group can easily see our priorities and

decide to reorganize them if needed

How many spreadsheets?
  1 spreadsheet for the DLA Software

Team
  1 spreadsheet per collection

  A DLA Content Team works on one or two
collections at a time

Grooming the to-do list
  Very important

  (Another Scrum concept)
  Done by the Team Lead

  (Scrum: “Scrum Master”)
  Keep updating the to-do list

  Make sure it gives an exact picture of the
current reality (no tasks missing, etc.)

Grooming the to-do list (2)

  Look down the list to prepare the tasks
  Identify road blocks (Scrum:

“impediments”)
  Remove them by talking to the relevant

people
  E.g., Sys Admin for new storage

DLA Software Team’s
to-do list

  During meetings: mostly look at the to-do list and
update it live

  Work only on the first 4 or 5 to-do items at the top
of the list

  Clearly marked as “active”
  All the other to-do items are officially inactive

= Waiting in line for their turn
  Loose adaptation of Scrum’s “Sprint backlog”

  Forces clear prioritization
  Can’t vaguely claim that you are working on “everything”

Milestones
  For every functionality piece that someone is

actively “waiting for”
  Fake meeting in Meeting Maker (our web-

based calendaring application)
  Works amazingly well because the

milestones are right under people’s nose all
day
  Programmer cannot “forget” about it, and sees it

coming
  “Customer” is reassured, and does not ask you

about their new functionality every 2 days

Milestones (2)
  “Move to production” milestones

  Once a month at a predictable time (end of the
month)

  Also in Meeting Maker
  Because moving small changes from the

development server to the production server was
becoming a full-time job for our programmer

  People got used to this surprising quickly
  Creates a regular rhythm around which our work

is organized (Scrum: “sprints”)

Meetings
  No daily meetings like in Scrum
  DLA Software Team meets once a week
  Each DLA Content Team meets about every

2 weeks
  One overall DLA meeting a month with all the

core DLA members
  Plenty of informal communication on a need-

be basis

Process review
  We review our process regularly to see

what can be improved
  esp. at the end of each project

“Finishing” a project
  No more never-ending projects
  Push hard to go live early

  Share development version of the project
right from the beginning

  Everybody sees the site evolve as we go
  Ongoing testing

  Put into production as soon as the site is
minimally functional

“Finishing” a project (2)
  Control functionality creep

  New functionality pieces
  Waiting for their turn in the big DLA Software to-do list
  “Competing” against all the other pieces in terms of

priority
  Each DLA Content Team knows that

  Chooses the smallest possible subset of functionality to
be implemented by go-live date

  Functionalities on “Wish list” developed after go-live date
(e.g., image rotation)

  Negociate reachable milestones for most
important functionalities

“Finishing” a project (3)
  After a project goes live

  The DLA Content Team completely stops
working on it

  Except bug fixing
  No more meetings

  The Project Owner collects feedback and
creates a wish list

“Finishing” a project (4)
  DLA Content Team briefly reopens the project

about 4 months after it goes live
  Reviews the wish list
  Decides if new pieces of functionality should be put on

the DLA Software Team’s to-do list
  Decides if the Ingester should be doing a few small

tweaks

  If a project needs a new round of development
  Handled as a completely separate project
  Added to the DLA Content Team’s list of future projects

Conclusion
  We are very happy with this model. It really

works for us!
  My recommendations

  The Agile/Scrum approach is very powerful
  Use it as a source of inspiration
  But don’t be afraid to pick and choose

  Try pieces of it and keep what works for you

  Questions?

