Agile Project

!L Management at Penn

Delphine Khanna
University of Pennsylvania

DLF Forum -- Nov 1, 2010




How we got there

= Grew organically over the last 4 years
through trial and error

s Goals

= Create a project management structure that:
= Keeps overhead to a minimum
= Allows for maximum flexibility and nimbleness

= Gives us a sense that things are under control

Deadlines met, software development not seen as the
bottleneck, ability to complete each project more quickly,
and handle more projects concurrently and efficiently



i How we got there (2)

= Took quite some inspiration from the agile/
scrum approach
= Agile Manifesto

= Formal agile/scrum training about a year ago
=« With Kristine Shannon

= Not trying to be systematic about following scrum
= No claim at all that we are a Scrum shop

= We don’t use most of the jargon! ;-)



i Note

= [0 give the context of our approach

= Describe a bit our software system and our
team set up




Key concepts in our project
management approach

= Software development = series of distinct
functionality pieces (Scrum: “user stories”)

= [ransparence
= Everybody in the organization can see exactly what we are
doing and where we are in our development
= Clear and reliable milestones
= (Internal) customers trust that we will meet our milestones

= Go into production only once a month

= Move new code from development server to production
server

= Creates a regular rhythm around which our work is
organized (Scrum: “sprints”)



i Software system: the DLA

= PM approach went hand in hand with the
development of a “generalized” software
system

= A single system that handles all our delivery needs

= Collections of images, book facsimiles, EAD finding aids,
“netflix-style” video catalog, staff directory, and much
more...

= Based on Solr/Lucene

= With generalized ingestion tools and generalized
web delivery

= Both customizable through configuration files




i Software system: the DLA (2)

= Some new projects require O core
development
= E.g., a new image collection, when we have
already the features needed to handle image
collections
= Just a matter of ingesting the collection and
configuring it
« XSLT/CSS-based customization
« + Cataloging / metadata clean up / scanning / QA, etc.



i Software system: the DLA (3)

= SOMe new projects require some new
pieces of functionality
= E.g., a collection of arabic book facsimiles

requires us to add the functionality “right-
to-left page browsing”




Consequences on

i project management

= Clear distinction between “ingestion of a
new collection” and “software
development”

= Ingestion is done by “DLA Ingesters”

= They do not need to be expert
programmers (mostly XML and XSLT)




Consequences on
project management (2)

= Software development
= Done by Core Programmer(s)

= Seen as a list of functionality pieces

= Independent from each other
= Small to medium in size

= Advantages
= Easier to establish priorities
= Easier to control the timeline
Come up with clear milestones

= Quicker results

Each time a piece is ready, it can go live, without waiting
for a big release at the end of several months



i Team structure

s 1 DLA Software Team

= Develops the DLA software (all new DLA
functionality pieces)

= Composed of:
= 1 Team Lead / Project Manager
s Core Programmer(s): 0.5to 1 FTE




Staff structure (2)

» 4 DLA Content Teams

= Ingest new collections into the DLA system

= Each team focuses on one format

= Images, Book Facsimiles, OPAC Subsets, Non-Marc
(EAD, OAl, etc.)

= Core members on each team

= 1 DLA Ingester, 1 Cataloger/Metadata Librarian, 1 Public
Services Librarian, Web Designer

= Note: not a cast of thousands

= E.g.,lamthe Team Lead for DLA Software Team and a
DLA Ingester




Staff structure (3)

s Guest members on each DLA Content Team

= Onboard only for the duration of one project
= Collection-specific experts
Curators, bibliographers, catalogers, HR person, etc.
= One of them is always the “project owner”

Provides ongoing advocacy for the project (even after the
project is completed), takes care of it, notices problems in
the long term, etc. (+/- Scrum: “Product Owner”)

= Advantage of having core members
= Develop very strong DLA expertise




Heavy use of Google Docs

:L_spreadsheets

= Especially to manage each team’s to-do list
(Scrum: “backlog”)

= Very low overhead to enter a new to-do item
= Can easily sort list based on various criteria

= Edit the spreadsheet during the meeting

= By the end of the meeting your to-do list is
essentially up to date

= Each to-do item is assigned complexity points
and priority points (another Scrum thing)

= Helps prioritization effort




Heavy use of Google Docs
spreadsheets (2)

= Every to-do list is viewable by all staff
Total transparency

= Helps communicate on “what keeps you busy
all day” question

= Helps working out prioritization issues across

the organization

=« People can see where their desired functionality stands,
and which other functionalities have higher priority

=« Really helps them understand "why” we are not working
on their functionality right now

= DLA Oversight Group can easily see our priorities and
decide to reorganize them if needed




i How many spreadsheets?

= 1 spreadsheet for the DLA Software
Team
= 1 spreadsheet per collection

= A DLA Content Team works on one or two
collections at a time




i Grooming the to-do list

= Very important
= (Another Scrum concept)

= Done by the Team Lead
s (Scrum: “Scrum Master”)

= Keep updating the to-do list

= Make sure it gives an exact picture of the
current reality (no tasks missing, etc.)




i Grooming the to-do list (2)

= Look down the list to prepare the tasks
= |ldentify road blocks (Scrum:
“impediments”)
= Remove them by talking to the relevant
people
=« E.9., Sys Admin for new storage



DLA Software Team'’s
to-do list

= During meetings: mostly look at the to-do list and
update it live

= Work only on the first 4 or 5 to-do items at the top
of the list
« Clearly marked as “active”

= All the other to-do items are officially inactive
= Waiting in line for their turn

= Loose adaptation of Scrum’s “Sprint backlog”

= Forces clear prioritization
= Can’t vaguely claim that you are working on “everything”



il\/lilestones

= For every functionality piece that someone is
actively “waiting for”

= Fake meeting in Meeting Maker (our web-
based calendaring application)

= Works amazingly well because the
milestones are right under people’s nose all
day
= Programmer cannot “forget” about it, and sees it
coming

= "Customer” is reassured, and does not ask you
about their new functionality every 2 days




i_l\/lilestones (2)

= "Move to production” milestones

Once a month at a predictable time (end of the
month)

Also in Meeting Maker

Because moving small changes from the
development server to the production server was
becoming a full-time job for our programmer

People got used to this surprising quickly

Creates a regular rhythm around which our work
IS organized (Scrum: “sprints”)



i_l\/leetlngs

= No daily meetings like in Scrum
s DLA Software Team meets once a week

= Each DLA Content Team meets about every
2 weeks

= One overall DLA meeting a month with all the
core DLA members

= Plenty of informal communication on a need-
be basis



i Process review

= \We review our process regularly to see
what can be improved

= esp. at the end of each project




“Finishing” a project

= No more never-ending projects

= Push hard to go live early

= Share development version of the project
right from the beginning

= Everybody sees the site evolve as we go
= Ongoing testing
= Put into production as soon as the site is
minimally functional



"Finishing” a project (2)

= Control functionality creep

= New functionality pieces
= Waiting for their turn in the big DLA Software to-do list
=« “Competing” against all the other pieces in terms of
priority
= Each DLA Content Team knows that

= Chooses the smallest possible subset of functionality to
be implemented by go-live date

= Functionalities on “Wish list” developed after go-live date
(e.g., image rotation)
= Negociate reachable milestones for most
important functionalities



“Finishing™ a project (3)

= After a project goes live

= The DLA Content Team completely stops
working on it
« Except bug fixing
= No more meetings
= The Project Owner collects feedback and
creates a wish list



"Finishing™ a project (4)

= DLA Content Team briefly reopens the project
about 4 months after it goes live

= Reviews the wish list

= Decides if new pieces of functionality should be put on
the DLA Software Team’s to-do list

= Decides if the Ingester should be doing a few small
tweaks
= If a project needs a new round of development

»« Handled as a completely separate project
= Added to the DLA Content Team'’s list of future projects




:E_Conclusion

= We are very happy with this model. It really
works for us!

= My recommendations
= The Agile/Scrum approach is very powerful
= Use it as a source of inspiration

= But don’t be afraid to pick and choose
= [ry pieces of it and keep what works for you

s Questions?



