
Agile Project Management

and the Real World

Emily Lynema

DLF Fall 2010

November 1, 2010

Outline

• Why care about project management?

• Traditional vs. Agile

• What is Agile?

• What is Scrum?
• Agile case study: NCSU

• Making choices

• Resources

Why care?

• You have too much to do

• NCSU Libraries

– 6 developers

– 33 Digital Library staff

– >250 library staff

• Core Information Systems

– 3 full-time developer positions

– 18 supported applications

– 10 in active development

What makes it harder?

• Priorities change frequently

• Requirements change frequently

• No defined business analysts

• Emergencies happen every day

• Many projects across few people

• Everyone handles full life cycle

And it keeps going….

• IT black box

– How long?

– When will it be ready?

– When will you work on my stuff?

– Are you actually doing anything?

– What do I have to do to get something

done?

Traditional Project

Management

……

Agile Project Management

…….

What‟s the same?

• A project is still a project:

– Vision

– Life cycle

– Requirements

– Schedule

– Team

– Communication mechanisms

Project Life Cycle

Agile: iterative

1. Envision

2. Speculate

3. Explore

4. Adapt

5. Close

6. Repeat 3 – 5 as

necessary

Traditional: waterfall

1. Initiate

2. Plan

3. Define

4. Design

5. Build

6. Test

Taken from Highsmith, James (2010). Agile project

management: creating innovative products

What‟s different?

• Traditional

– Plan all in advance

– Work-breakdown

structure

– Functional specs

– Gantt chart

– Status reports

– Deliver at the end

– Learn at the end

– Follow the plan

– Manage tasks

• Agile

– Plan as you go

– Feature-breakdown

structure

– User stories

– Release plan

– Story boards

– Deliver as you go

– Learn every iteration

– Adapt everything

– Manage team

What is Agile?

“Agile development is a method of

building software by empowering and

trusting people, acknowledging

change as norm, and promoting

constant feedback”

Shuh, Peter (2005). Integrating Agile Development in the Real

World. p.2.

What is Agile?

“The formula for success is simple: deliver

today, adapt tomorrow. ”

Highsmith, James (2010). Agile project management: creating

innovative products. p.29.

What is Agile?

• Response to waterfall approach

• Values:

– Individuals and interactions

– Working software

– Customer collaboration

– Responding to change

Manifesto for Agile Software Development. Accessible at

http://agilemanifesto.org/

http://agilemanifesto.org/

1. Our highest priority is to satisfy the

customer through early and

continuous delivery of valuable

software.

Agile Principles

Manifesto for Agile Software Development. Accessible at

http://agilemanifesto.org/

http://agilemanifesto.org/

2. Welcome changing requirements,

even late in development. Agile

processes harness change for the

customer's competitive advantage.

Agile Principles

Manifesto for Agile Software Development. Accessible at

http://agilemanifesto.org/

http://agilemanifesto.org/

Agile Principles

3. Deliver working software frequently,

from a couple of weeks to a couple of

months, with a preference to the

shorter timescale.

Manifesto for Agile Software Development. Accessible at

http://agilemanifesto.org/

http://agilemanifesto.org/

Agile Principles

4. Business people and developers

must work together daily throughout

the project.

Manifesto for Agile Software Development. Accessible at

http://agilemanifesto.org/

http://agilemanifesto.org/

Agile Practices - Managerial

• Collocate team members and

customers

• Allow team members to make decisions

• Maintain quality of work life

• Use information radiators for

transparency and accountability

• Daily stand-up meetings

• Regularly evaluate processes

Agile Practices - Technical

• Build automation

• Automated deployment

• Continuous integration

• Simple design

• Collective ownership

• Refactoring

• Pair programming

Project Life Cycle

Agile: iterative

1. Envision

2. Speculate

3. Explore

4. Adapt

5. Close

6. Repeat 3 – 5 as

necessary

Traditional: waterfall

1. Initiate

2. Plan

3. Define

4. Design

5. Build

6. Test

Taken from Highsmith, James (2010). Agile project

management: creating innovative products

Envision

• Initiate project

• Develop project vision, objectives, and

constraints

• Create a core team

• High-level feature list

Speculate

• Plan and Define project

• Gather initial broad requirements

• Create initial backlog of features with

user stories

• Develop iterative high-level release plan

– Velocity + story points

– Must be adaptable over time!

What is a user story?

See Cohn, Mike (2004). User Stories Applied. It‟s the authoritative

source for user stories.

Agile Planning

• 5 levels of agile planning

– Vision

– Roadmap (2 years)

– Release (2 months)

– Iteration (2 weeks)

– Daily

Image copyright CC-A-SA by jakuza

http://www.flickr.com/photos/jakuza/2681648917/sizes/z/

http://www.flickr.com/photos/jakuza/2681648917/sizes/z/

Explore

• Design, build, and test project

• Iteration planning
– Commit to user stories for iteration

– Create and estimate technical tasks

• Monitor progress
– Daily stand-ups

– Visual taskboard

– Burndown chart

• Working code = committed + tested

Image copyright CC-A-NC by Gerry Kirk

http://www.flickr.com/photos/gkirk/3352780464/

http://www.flickr.com/photos/gkirk/3352780464/

Adapt

• Review everything!
– Not part of traditional model

• Customer demonstrations
– Feedback used to plan next iteration

• Technical review

• Team performance
– Do need to change process?

• Project status
– Do we need to re-align release plan?

Close

• Release (maybe)

• Celebrate!

Agile Development

Methodologies
• eXtreme Programming

• Crystal

• Lean Software Development

• Scrum

• Feature-Driven Development (FDD)

What is Scrum?

• Focuses on iteration management

• Roles

– Product Owner

– ScrumMaster

– Team

• Artifacts

– Product Backlog

– Sprint Backlog

A Scrum Sprint

Image from www.mountaingoatsoftware.com/scrum

A Scrum Sprint

• Sprint Planning

– Commit to certain functionality & estimate

– Produces Sprint Backlog

• Daily Scrum

– 15 minutes @ start of day

– What have you done since last Scrum?

– What will do before next Scrum?

– What obstacles?

A Scrum Sprint

• Sprint

– Team does the work!

• Sprint Review

– Show off completed functionality

– Add new requests / changes to backlog

• Sprint Retrospective

– What went well during the Sprint?

– What could be improved for the next?

Agile Case Study: NCSU

Agile in Libraries

• What makes agile challenging to apply

in libraries?

– Small development teams

– Responsible for both operational support

and development

– Often *many* smaller projects to handle

– Fewer defined project roles

Why Agile @ NCSU?

• Tackle big problems in small pieces

• Be more transparent

• Be more adaptable

• Produce tangible results quickly and

frequently

What is Agile @ NCSU?

• Loosely based on Scrum

• Iterative development cycles followed

by release

• Ongoing, just-in-time planning &

documentation

• Collaboration with customers

– Cross-functional teams w/IT point person

– Developers participate

Transition

• Migrating from 6 week to 3 week cycle

• Goals
– Focus on fewer projects at a time

– Increase collaboration and cross-training

– Reduce complexity of planning

– Easier to estimate and plan velocity

– Easier to freeze requirements & projects

– Technology spikes

Real world

• 3 week iteration

– Speculate: release planning prior to start of

iteration

– Explore: 3 weeks development

• Start with sprint planning

• Re-align as necessary

– Adapt

• Expose to customers during cycle

NCSU Toolbox

• Requirements: Confluence + JIRA

• Product & Sprint backlog: JIRA

• Release planning: Google docs

• Sprint planning: Google docs + JIRA

• Daily Scrum

• Sprint review: Product Team meetings

• Sprint retrospective

Speculate

Release Planning

• Ongoing

– Each stakeholder team works with IT

representatives to lay out functional

priorities for upcoming releases

– This is very flexible and changeable!

• Core IT team prioritizes several projects

each cycle

Release Planning

• 3rd week of previous iteration

– High level overview of upcoming projects

out 3 months

– Prioritize projects for the next 3 week

iteration with core IT staff

– Goal: no more than 2 projects at a time

– Just in time requirements gathering this

week, if necessary

Sprint Planning

• Day 1 of iteration

– 2-hour meeting

– Include all development team members

– Goal: utilize stories already entered in JIRA

– Collaboratively create and estimate tasks

for all stories

– Collaboratively assign / volunteer for tasks

Sprint Planning

• Day 2 or 3

– Add up task estimates across projects

– Ensure that individual developers are not

over-committed

– Scope down at project level or divide work

as necessary

Explore

Development

• Get it done

• Daily scrum 10 – 15 minutes

– Identify obstacles and priorities

– Emphasize collaboration

• Weekly review

– How does progress look for cycle?

– Requires estimation and work logging

• Subversion -> JIRA integration

Testing

• “the weakest link”

• Manual testing throughout iteration

– Utilize weekly product team emails

– Demo at regular meetings

– Need automated testing!

• Developers and IT product managers

are first line of QA

Adapt

Weekly Review

• How much progress are we making

toward sprint goal?

– Things are harder than you expect

– New requests come in

– Emergencies crop up

Sprint Retrospective

• Last day of iteration

– Did we accomplish what we wanted to?

– If not, why not?

– What went well?

– What would we do differently next time?

Close

Release

• Release at end of cycle if approved

– Stakeholders may prefer to wait for new

features

– Release can be delayed if testing is not

performed during cycle

– Need automated testing!

• If release is large or complex, may need

an entire cycle to test prior to release

Things we‟ve learned

• Prioritization difficult for library staff.

– Work at release level or higher

• Reduce „churn‟ by trying to focus on

fewer projects within a given cycle.

• Limit the unknown – don‟t combine new

projects with new technologies.

• Difficult to freeze plans for 6 weeks.

Challenges

• Many small projects to support at once

– Not traditional for Agile practices

– Each iteration can be a release

• Difficult to estimate story points

– Planning hindered with estimates at task-

level only

• Tough to fit it all into 3 weeks

– Develop a rhythm of staggered release?

Challenges

• Difficult to develop requirements in time

– True customer not collocated with team

– Teams of librarians work slowly

• Testing

– How and when to automate for small projects?

– No „QA‟ experts

• Simultaneously handle support and

development

Outcomes

• Positive movement across multiple

projects

– Individual development efforts timeboxed

– In 2010, ~32 releases across 9 projects

– Increased user satisfaction

• Increased flexibility to adapt to changing

priorities and needs

Why Choose?

• Traditional

– Change is very

expensive

– Well-defined

requirements

– Project is familiar

territory

– Customer is difficult

to communicate with

• Agile

– Change happens

frequently

– Requirements not

well-defined

– New technology or

project domain

– Customer isn‟t sure

of what is desired

Agile Tools

• JIRA + Greenhopper
– 10 users for $20 (local installation)

– http://www.atlassian.com/software/jira/

– http://www.atlassian.com/software/greenhopper/

• Agile Zen
– Free for one project (hosted)

– http://agilezen.com/

• VersionOne
– Free for one team (hosted)

– http://www.versionone.com/

http://www.atlassian.com/software/jira/
http://www.atlassian.com/software/greenhopper/
http://agilezen.com/
http://www.versionone.com/

Online

• Agile Manifesto

http://agilemanifesto.org/

• Agile for All blog:

http://www.agileforall.com/blog/

• Succeeding with Agile:

http://blog.mountaingoatsoftware.com/

http://agilemanifesto.org/
http://www.agileforall.com/blog/
http://blog.mountaingoatsoftware.com/

Books

• Agile Project Management with Scrum

ISBN: 073561993X

• Agile Software Development with Scrum

ISBN: 0130676349

• Managing Agile Projects

ISBN: 0131240714

• Agile Project Management: Creating
Innovative Products

ISBN: 0321658396

Questions

• Emily Lynema

• Associate Head of Information

Technology, NCSU Libraries

• emily_lynema@ncsu.edu

