
Agile Project
Management at Penn

Delphine Khanna
University of Pennsylvania
DLF Forum -- Nov 1, 2010

How we got there
  Grew organically over the last 4 years

through trial and error
  Goals

  Create a project management structure that:
  Keeps overhead to a minimum
  Allows for maximum flexibility and nimbleness
  Gives us a sense that things are under control

  Deadlines met, software development not seen as the
bottleneck, ability to complete each project more quickly,
and handle more projects concurrently and efficiently

How we got there (2)
  Took quite some inspiration from the agile/

scrum approach
  Agile Manifesto
  Formal agile/scrum training about a year ago

  With Kristine Shannon

  Not trying to be systematic about following scrum
  No claim at all that we are a Scrum shop

  We don’t use most of the jargon! ;-)

Note

  To give the context of our approach
  Describe a bit our software system and our

team set up

Key concepts in our project
management approach
  Software development = series of distinct

functionality pieces (Scrum: “user stories”)
  Transparence

  Everybody in the organization can see exactly what we are
doing and where we are in our development

  Clear and reliable milestones
  (Internal) customers trust that we will meet our milestones

  Go into production only once a month
  Move new code from development server to production

server
  Creates a regular rhythm around which our work is

organized (Scrum: “sprints”)

Software system: the DLA
  PM approach went hand in hand with the

development of a “generalized” software
system
  A single system that handles all our delivery needs

  Collections of images, book facsimiles, EAD finding aids,
“netflix-style” video catalog, staff directory, and much
more…

  Based on Solr/Lucene
  With generalized ingestion tools and generalized

web delivery
  Both customizable through configuration files

Software system: the DLA (2)
  Some new projects require 0 core

development
  E.g., a new image collection, when we have

already the features needed to handle image
collections

  Just a matter of ingesting the collection and
configuring it

  XSLT/CSS-based customization
  + Cataloging / metadata clean up / scanning / QA, etc.

Software system: the DLA (3)
  Some new projects require some new

pieces of functionality
  E.g., a collection of arabic book facsimiles

requires us to add the functionality “right-
to-left page browsing”

Consequences on
project management
  Clear distinction between “ingestion of a

new collection” and “software
development”

  Ingestion is done by “DLA Ingesters”
  They do not need to be expert

programmers (mostly XML and XSLT)

Consequences on
project management (2)
  Software development

  Done by Core Programmer(s)
  Seen as a list of functionality pieces

  Independent from each other
  Small to medium in size

  Advantages
  Easier to establish priorities
  Easier to control the timeline

  Come up with clear milestones
  Quicker results

  Each time a piece is ready, it can go live, without waiting
for a big release at the end of several months

Team structure
  1 DLA Software Team

  Develops the DLA software (all new DLA
functionality pieces)

  Composed of:
  1 Team Lead / Project Manager
  Core Programmer(s): 0.5 to 1 FTE

Staff structure (2)
  4 DLA Content Teams

  Ingest new collections into the DLA system
  Each team focuses on one format

  Images, Book Facsimiles, OPAC Subsets, Non-Marc
(EAD, OAI, etc.)

  Core members on each team
  1 DLA Ingester, 1 Cataloger/Metadata Librarian, 1 Public

Services Librarian, Web Designer
  Note: not a cast of thousands

  E.g., I am the Team Lead for DLA Software Team and a
DLA Ingester

Staff structure (3)
  Guest members on each DLA Content Team

  Onboard only for the duration of one project
  Collection-specific experts

  Curators, bibliographers, catalogers, HR person, etc.
  One of them is always the “project owner”

  Provides ongoing advocacy for the project (even after the
project is completed), takes care of it, notices problems in
the long term, etc. (+/- Scrum: “Product Owner”)

  Advantage of having core members
  Develop very strong DLA expertise

Heavy use of Google Docs
spreadsheets
  Especially to manage each team’s to-do list

(Scrum: “backlog”)
  Very low overhead to enter a new to-do item
  Can easily sort list based on various criteria
  Edit the spreadsheet during the meeting

  By the end of the meeting your to-do list is
essentially up to date

  Each to-do item is assigned complexity points
and priority points (another Scrum thing)
  Helps prioritization effort

Heavy use of Google Docs
spreadsheets (2)
  Every to-do list is viewable by all staff

  Total transparency
  Helps communicate on “what keeps you busy

all day” question
  Helps working out prioritization issues across

the organization
  People can see where their desired functionality stands,

and which other functionalities have higher priority
  Really helps them understand “why” we are not working

on their functionality right now
  DLA Oversight Group can easily see our priorities and

decide to reorganize them if needed

How many spreadsheets?
  1 spreadsheet for the DLA Software

Team
  1 spreadsheet per collection

  A DLA Content Team works on one or two
collections at a time

Grooming the to-do list
  Very important

  (Another Scrum concept)
  Done by the Team Lead

  (Scrum: “Scrum Master”)
  Keep updating the to-do list

  Make sure it gives an exact picture of the
current reality (no tasks missing, etc.)

Grooming the to-do list (2)

  Look down the list to prepare the tasks
  Identify road blocks (Scrum:

“impediments”)
  Remove them by talking to the relevant

people
  E.g., Sys Admin for new storage

DLA Software Team’s
to-do list

  During meetings: mostly look at the to-do list and
update it live

  Work only on the first 4 or 5 to-do items at the top
of the list

  Clearly marked as “active”
  All the other to-do items are officially inactive

= Waiting in line for their turn
  Loose adaptation of Scrum’s “Sprint backlog”

  Forces clear prioritization
  Can’t vaguely claim that you are working on “everything”

Milestones
  For every functionality piece that someone is

actively “waiting for”
  Fake meeting in Meeting Maker (our web-

based calendaring application)
  Works amazingly well because the

milestones are right under people’s nose all
day
  Programmer cannot “forget” about it, and sees it

coming
  “Customer” is reassured, and does not ask you

about their new functionality every 2 days

Milestones (2)
  “Move to production” milestones

  Once a month at a predictable time (end of the
month)

  Also in Meeting Maker
  Because moving small changes from the

development server to the production server was
becoming a full-time job for our programmer

  People got used to this surprising quickly
  Creates a regular rhythm around which our work

is organized (Scrum: “sprints”)

Meetings
  No daily meetings like in Scrum
  DLA Software Team meets once a week
  Each DLA Content Team meets about every

2 weeks
  One overall DLA meeting a month with all the

core DLA members
  Plenty of informal communication on a need-

be basis

Process review
  We review our process regularly to see

what can be improved
  esp. at the end of each project

“Finishing” a project
  No more never-ending projects
  Push hard to go live early

  Share development version of the project
right from the beginning

  Everybody sees the site evolve as we go
  Ongoing testing

  Put into production as soon as the site is
minimally functional

“Finishing” a project (2)
  Control functionality creep

  New functionality pieces
  Waiting for their turn in the big DLA Software to-do list
  “Competing” against all the other pieces in terms of

priority
  Each DLA Content Team knows that

  Chooses the smallest possible subset of functionality to
be implemented by go-live date

  Functionalities on “Wish list” developed after go-live date
(e.g., image rotation)

  Negociate reachable milestones for most
important functionalities

“Finishing” a project (3)
  After a project goes live

  The DLA Content Team completely stops
working on it

  Except bug fixing
  No more meetings

  The Project Owner collects feedback and
creates a wish list

“Finishing” a project (4)
  DLA Content Team briefly reopens the project

about 4 months after it goes live
  Reviews the wish list
  Decides if new pieces of functionality should be put on

the DLA Software Team’s to-do list
  Decides if the Ingester should be doing a few small

tweaks

  If a project needs a new round of development
  Handled as a completely separate project
  Added to the DLA Content Team’s list of future projects

Conclusion
  We are very happy with this model. It really

works for us!
  My recommendations

  The Agile/Scrum approach is very powerful
  Use it as a source of inspiration
  But don’t be afraid to pick and choose

  Try pieces of it and keep what works for you

  Questions?

